Upsilon R_{AA} update

Sasha Lebedev (ISU)

eID efficiency = 70%, no suppression

For 70% eID efficiency we have better background now, same number of Upsilons

70% vs. 90% eID efficiency

Worse background, but more Upsilons R_{AA} uncertainty a little better

eID efficiency 70%, realistic suppression

Integrated over p_T number of Y(3S) = 26 (43 for eID eff. = 90%)

70% vs. 90% eID efficiency, realistic suppression

Closer look at invariant mass distributions

Realistic suppression, p_T 0-2 GeV, eID eff. = 70%

Assume that we can calculate infinite number of mixed events, so that subtracting background does not introduce additional stat. error (only systematic).

Blue: combinatorial background

Red: correlated background

Fit with triple Crystal Ball function

$p_T = 6-10$ GeV; eID eff = 70%; realistic suppression

Some conclusions

For Y(1S) and Y(2S) R_{AA} is now better than in sPHENIX proposal, but worse for Y(3S).

Maybe using Crystal Ball fit to extract the yield will help?

The problem is how to propagate uncertainty of the fit parameters to the integral.

Backup Slides

$p_T = 0-2$ GeV; eID eff = 90%; realistic suppression

$p_T = 6-10 \text{ GeV/c}$; eID eff. = 90%; realistic suppression

all p_T; realistic suppression

